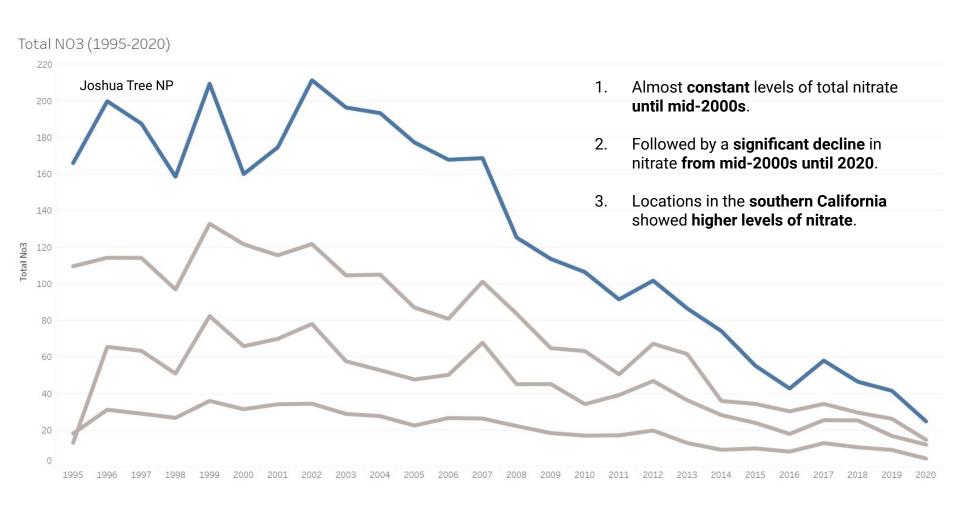
Predicting Total Nitrate (NO3) in the Atmosphere

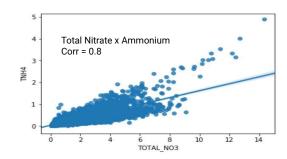
TEAM 2

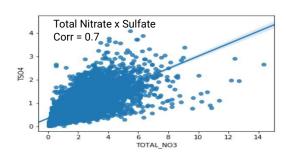
Ali Khan Marianna Carini Sasha Prokhorova Marquise Piton

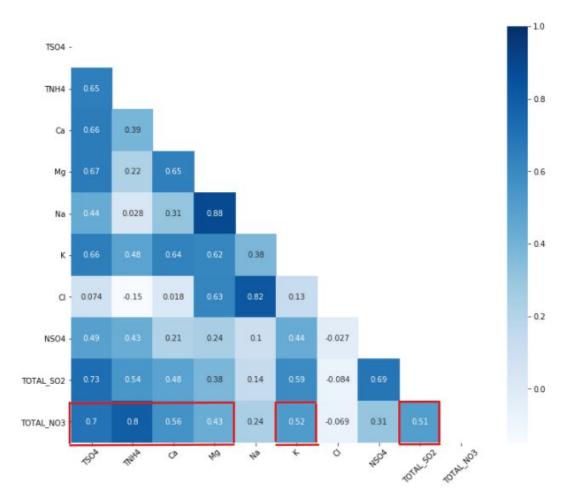
Protecting our ecosystems starts with understanding the fundamental threats to them.


In this project, we explore common environmental pollutants and build a predictive model to estimate the total nitrate (NO3) in the atmosphere.

Exploratory Data Analysis


To a second	1100	1	1 21
Total	NO3	(ug/	m3,


Joshua Tree NP 3,338	Sequoia NP - Ash Mountain 1,615	1,236	Yosemite NP - Turtleback Dome 1,162
	_		
	_		
	_		
	Death Valley NM	Sequoia NP - Lookout	Pt Lassen
	1,076	988	Volcanic NP 545



Correlation of Total Nitrate (in descending order):

- 1. Ammonium (TNH4) 0.8
- 2. Sulfate (TSO4) 0.7
- 3. Calcium (Ca) 0.56
- 4. Potassium (K) 0.52
- 5. Sulfur Dioxide (SO2) 0.51
- 6. Magnesium (Mg) 0.43

Modeling Total NO3

 Using the variables of interest fromt the EDA we were able to move to our modeling

 Because the NO3 data was right skewed, we decided to use a Gamma model

Below is a summary of the model

OLS	Regression	Results

88% R-squared

value

	Dep. Variable:	TOTAL_NO3		R-squa	red (unc	entered):	0.878
	Model:	OLS	Adj	. R-saus	Ju (unc	entered).	0.878
	Method	Loast Squares			F-	statistic:	1.476e+04
	Date:	Sat, 24 Oct 2020			Prob (F-s	statistic):	0.00
	Time:	14:19:33			Log-Lil	kelihood:	-7887.8
	No. Observations:	6159				AIC:	1.578e+04
	Df Residuals:	6156				BIC:	1.580e+04
	Df Model:	3					
	Covariance Type:	nonrobust					
	coef s	std err t	P> t	[0.025	0.975]		
	TEO		-0	1 027	1 1 1 1 2		

Durbin-Watson:

Jarque-Bera (JB):

Prob(JB):

Cond. No.

0.654

0.00

5.58

1878.262

0.042

624.858

0.537

5.483

Omnibus:

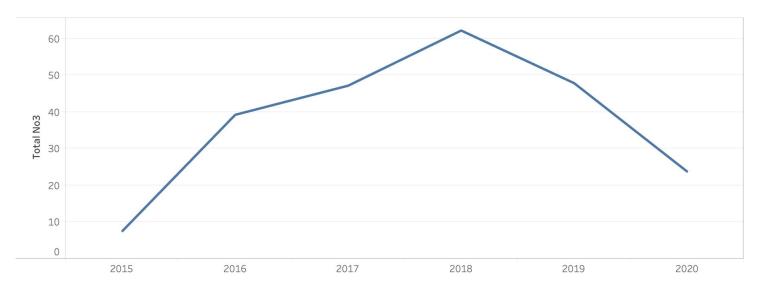
Kurtosis:

Prob(Omnibus):

Appendix

Limitations and Assumptions

Limitations


- 1. Data limited to only California
- 2. Some locations have different periods of data
- 3. Missing measurements for some variables (Ca, Mg, K, Na, Cl)

Assumptions:

- 1. Correlation independent of time
- 2. No significant climate changes in California since 1995
- 3. No effect of topography on the difference between locations

Conclusions

- Variables of interest for Total NO3: TSO4, TNH4, WSO2, Ca, K
- Variables of interest for Total NO3: TSO4, TNH4, WSO2

